metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aquamalonato(1,10-phenanthroline)copper(II) sesquihydrate

Madina Diallo,^a Moussa Dieng,^a Mohamed Gaye,^a* Abdou Salam Sall,^a Aliou Hamady Barry^b and Beghidja Chahrazed^c

^aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, ^bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and ^cUniversité Louis Pasteur, Laboratoire DECMET, UMR CNRS 7513, 4 Rue Blaise Pascal, 6700 Strasbourg, France

Correspondence e-mail: mlgayeastou@yahoo.fr

Received 26 April 2007; accepted 11 May 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.045; w*R* factor = 0.124; data-to-parameter ratio = 20.2.

In the title compound, $[Cu(C_3H_4O_4)(C_{12}H_8N_2)(H_2O)]$. 1.5H₂O, there are two complex molecules and three uncoordinated water molecules in the asymmetric unit. In both complex molecules, the Cu atom is five-coordinated by one bidentate 1,10-phenanthroline molecule, one bidentate malonate dianion and one water molecule, resulting in a distorted square-based pyramidal CuN₂O₃ chromophore. The structure is stabilized by O-H···O hydrogen bonds involving both the coordinated and uncoordinated water molecules.

Related literature

For related structures: see Anitolini *et al.* (1985); Ivanovic-Burmazovic *et al.* (1998); Chawla *et al.* (2004). For related literature, see: Addison *et al.* (1984).

Experimental

Crystal data

h

0

$C_{\nu}(C_{\tau}H_{\tau}O_{\tau})(C_{\tau}H_{\tau}N_{\tau})$	$\beta = 105.457.(1)^{\circ}$
(U,O) 1 5 U O	p = 105.457(1)
(H_2O)]·1.5H ₂ O	$\gamma = 109.1821(8)^{\circ}$
$I_r = 390.84$	$V = 1531.06 (5) \text{ A}^{-5}$
Friclinic, $P\overline{1}$	Z = 4
= 11.5591 (2) Å	Mo $K\alpha$ radiation
= 11.7450 (2) Å	$\mu = 1.47 \text{ mm}^{-1}$
= 12.5081 (2) Å	T = 173 (2) K
$x = 92.177 (1)^{\circ}$	$0.10 \times 0.10 \times 0.05 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: none 21966 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	442 parameters
$wR(F^2) = 0.124$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.58 \text{ e } \text{\AA}^{-3}$
8939 reflections	$\Delta \rho_{\rm min} = -0.74 \text{ e } \text{\AA}^{-3}$

8939 independent reflections

 $R_{\rm int} = 0.044$

6592 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Cu1-O2	1.9061 (18)	Cu2-O3	1.9114 (16)
Cu1-O1	1.9270 (16)	Cu2-O7	1.9246 (16)
Cu1-N4	1.989 (2)	Cu2-N1	2.017 (2)
Cu1-N3	2.0298 (19)	Cu2-N2	2.0260 (18)
Cu1-O9	2.293 (2)	Cu2-O10	2.2643 (18)

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O9−H29···O4	0.91	2.08	2.961 (3)	161
O9−H30···O12	0.96	1.85	2.769 (3)	158
O10-H27···O5	0.87	1.91	2.720 (3)	154
$O10-H28\cdots O8^{i}$	0.91	1.92	2.824 (3)	172
$O11-H25\cdots O8^{ii}$	0.99	1.99	2.983 (3)	174
O11−H26···O5	0.86	1.99	2.831 (3)	167
O12-H23···O13 ⁱⁱⁱ	0.95	1.86	2.800 (3)	168
$O12-H24\cdots O4^{iv}$	0.90	1.89	2.780 (3)	169
O13-H21···O6	0.96	1.96	2.915 (3)	177
$O13-H22\cdots O6^{iii}$	0.94	2.06	2.952 (3)	156

Symmetry codes: (i) -x + 2, -y, -z + 2; (ii) x, y + 1, z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y, -z + 1.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* (Nonius, 1998); data reduction: *DENZO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003) and *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No. 6301PS48).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2396).

References

- Addison, A. W., Rao, T. N., Reedijk, J., Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.
- Anitolini, L., Marcotrigiano, G., Menabue, L., Pellacani, G. C., Salaini, M. &
- Sola, M. (1985). *Inorg. Chem.* **24**, 3621–3626. Chawla, S. K., Arora, M., Nattinen, K., Rissanen, K. & Yakhmi, J. V. (2004). Polyhedron, 23, 3007-3019.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Ivanovic-Burmazovic, I., Bacchi, A., Pelissi, G., Leovac, V. & Andjelkovic, K. (1998). Polyhedron, 18, 119-127.
- Nonius (1998). COLLECT and DENZO. Nonius BV, Delft, The Netherlands. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2007). E63, m1810-m1811 [doi:10.1107/S160053680702332X]

Aquamalonato(1,10-phenanthroline)copper(II) sesquihydrate

M. Diallo, M. Dieng, M. Gaye, A. S. Sall, A. H. Barry and B. Chahrazed

Comment

The title compound, (I), consists of a mononuclear Cu(II) complex with two neutral molecules in the asymmetric unit (Fig. 1). The Cu(II) ion displays a five coordinated-geometry where the Cu atom is coordinated by two nitrogen atoms of one 1,10-phenanthroline ligand, two oxygen atoms of one non-bridging dicarboxylate group and one oxygen atom of a water molecule (Table 1). Furthermore the largest angles around the Cu(II) centers (β :N1—Cu2—O7=168.67 (8)° and β : N4—Cu1—O2=172.50 (8)°) are slightly larger than the second-largest ones (α : N2—Cu2—O3=164.80 (8)° and α : N3—Cu1—O1=164.14 (9)°). Since the distortion value of the coordination polyhedron, $\tau=(\beta-\alpha)/60$ is evaluated by the two largest angles in the five coordinated geometry (Addison *et al.* 1984), the values of $\tau=0.14$ for Cu1 and $\tau=0.06$ for Cu2 which can be compared with the ideal values of 1 for a trigonal-bipyramidal and 0 for a square-pyramidal seem to indicate a distorted square pyramidal geometry around the two Cu centers. Atoms [O1, O2, N4 and N3] and [O3, O7, N1 and N2] consist of a square planar geometry with some deviation from perfect square plane. The apical positions are occupied by O6 and O10 respectively. The malonate ligand afforded two deprotonated carboxylate groups leading to a dinegative charge on the ligand. The structure of (I) is stablisied by O—H···O hydrogen bonds (Table 2).

This structure is comparable to that of $[Cu(L-glu)(phen)(H_2O)]$ (Anitolini *et al.* 1985) in which the Cu ions also have distorted square-pyramidal coordination geometry comprised of a bidentate phenanthroline ligand and an O,*N*bidentate glutamate dianion and an apical coordination water O atom. The Cu—O_{water} lengths are 2.303 (2) and 2.268 (2) Å in the two molecules, slighly shorter than the value of 2.332 (4) Å observed for Cu—O_{water} Å in the complex [Cu(Hdapsox)(H₂O)](ClO₄) where H₂dapsox is 2',2'''-(2,6-pyridindiyldiethylidene) dioxamohydrazide (Ivanovic-Burmazovic *et al.* 1998) but similar to that observed in the complex [Cu₂(mal)₂(IX)(H₂O)₆]_n (Chawla *et al.* 2004) where IX is 1,4-bis(imidazole-1-yl-methylene)benzene) (2.277 Å).

Experimental

Into an aqueous solution (5 ml) of Cu(NO₃)₂ 3H₂O (0.3011 g, 1.25 mmol) was poured 1.5 ml of a molar solution of Na₂CO₃. The mixture was stirred for 5 minutes and centrifuged. The solid which was isolated was added into a methanolic solution (10 ml) of 1,10-phenanthroline monohydrate (0.2478 g, 1.25 mmol) and malonic acid (0.1301 g, 1.25 mmol). The resulting mixture was heated at 343 K for thirty minutes. The green solution was filtered and then allowed to evaporate slowly in an open atmosphere. After one week, green crystals of (I) were obtained. The crystals were separated, washed with cold methanol and dried (yield: 65%, based on Cu(NO₃)₂ 3H₂O); Anal. Calc. for C₃₀H₃₀Cu₂N₄O₁₃: C, 46.10; H, 3.87; N, 7.17%. Found: C, 46.06; H, 3.85; N, 7.19%.

Refinement

The O-bound H atoms were located in a difference map and refined as riding in their as found relative positions with a fixed U_{iso} of 0.062 Å². The C-bound H atoms were placed geometrically (C—H = 0.950.99 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. View of the asymmetric unit of (I) with displacement ellipsoids plotted at the 50% probability level (arbitrary spheres for the H atoms).

Aquamalonato(1,10-phenanthroline)copper(II) sesquihydrate

Crystal data

[Cu(C ₃ H ₄ O ₄)(C ₁ ₂ H ₈ N ₂)(H ₂ O)]·1.5H ₂ O	Z = 4
$M_r = 390.84$	$F_{000} = 800$
Triclinic, PT	$D_{\rm x} = 1.696 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
a = 11.5591 (2) Å	Cell parameters from 12012 reflections
b = 11.7450 (2) Å	$\theta = 1.0-30.0^{\circ}$
c = 12.5081 (2) Å	$\mu = 1.47 \text{ mm}^{-1}$
$\alpha = 92.177 \ (1)^{\circ}$	T = 173 (2) K
$\beta = 105.457 \ (1)^{\circ}$	Prism, green
$\gamma = 109.1821 \ (8)^{\circ}$	$0.10\times0.10\times0.05~mm$
$V = 1531.06(5) \text{ Å}^3$	

Data collection

Nonius Kappa CCD diffractometer	6592 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.044$
Monochromator: graphite	$\theta_{\text{max}} = 30.0^{\circ}$
T = 173(2) K	$\theta_{\min} = 1.7^{\circ}$
ω and ϕ scans	$h = -16 \rightarrow 16$
Absorption correction: none	$k = -16 \rightarrow 15$
21966 measured reflections	$l = -17 \rightarrow 17$
8939 independent reflections	

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.124$	$w = 1/[\sigma^2(F_o^2) + (0.0621P)^2 + 0.2273P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
8939 reflections	$\Delta \rho_{max} = 0.58 \text{ e} \text{ Å}^{-3}$
442 parameters	$\Delta \rho_{\rm min} = -0.74 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.83061 (3)	0.35565 (3)	0.64500 (2)	0.03168 (9)
Cu2	0.71496 (3)	0.06782 (3)	0.97437 (2)	0.02830 (9)
01	0.86279 (19)	0.36223 (17)	0.80482 (13)	0.0398 (4)
02	0.7194 (2)	0.4471 (2)	0.62900 (14)	0.0491 (5)
O3	0.71195 (19)	0.03964 (18)	0.82197 (13)	0.0404 (4)
O4	0.7521 (2)	-0.03321 (19)	0.67820 (14)	0.0474 (5)
05	0.84700 (18)	0.42129 (17)	0.96762 (13)	0.0387 (4)
O6	0.6375 (2)	0.5720 (2)	0.68385 (17)	0.0643 (7)
O7	0.78901 (17)	-0.05295 (16)	1.02331 (13)	0.0362 (4)
O8	0.88860 (19)	-0.18133 (18)	1.01234 (15)	0.0441 (5)
09	0.67258 (18)	0.16762 (18)	0.58759 (15)	0.0442 (5)
O10	0.90425 (16)	0.22466 (16)	1.03827 (13)	0.0348 (4)
O11	0.7673 (2)	0.5795 (2)	1.08301 (16)	0.0530 (5)
O12	0.4202 (2)	0.1567 (2)	0.52647 (18)	0.0660 (6)
O13	0.6054 (2)	0.6153 (2)	0.45161 (19)	0.0718 (7)
N1	0.60609 (19)	0.17145 (19)	0.92857 (15)	0.0289 (4)
N2	0.66727 (19)	0.08302 (19)	1.11745 (15)	0.0300 (4)
N3	0.8475 (2)	0.38116 (18)	0.48948 (15)	0.0307 (4)
N4	0.95203 (19)	0.26891 (19)	0.64407 (15)	0.0302 (4)
C1	0.5672 (2)	0.2071 (2)	1.01363 (18)	0.0281 (5)
C2	1.0673 (3)	0.1905 (3)	0.4113 (2)	0.0458 (7)
H1	1.1170	0.1460	0.3941	0.055*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C3	0.4628 (3)	0.3173 (3)	1.0999 (2)	0.0411 (6)
H2	0.4183	0.3729	1.0956	0.049*
C4	0.8381 (2)	0.4326 (2)	0.86825 (18)	0.0294 (5)
C5	0.8384 (2)	-0.1090 (2)	0.97004 (19)	0.0303 (5)
C6	0.7621 (2)	-0.0238 (2)	0.77940 (18)	0.0310 (5)
C7	1.0521 (3)	0.1971 (2)	0.5215 (2)	0.0374 (6)
C8	0.5733 (2)	0.2109 (2)	0.8310 (2)	0.0361 (6)
H3	0.5992	0.1861	0.7708	0.043*
C9	0.4924 (3)	0.2704 (3)	1.1961 (2)	0.0411 (6)
H4	0.4671	0.2926	1.2577	0.049*
C10	0.4974 (2)	0.2848 (2)	1.0038 (2)	0.0347 (5)
C11	0.7124 (3)	0.5173 (2)	0.7043 (2)	0.0367 (6)
C12	0.4645 (3)	0.3256 (3)	0.8995 (2)	0.0433 (6)
H5	0.4170	0.3788	0.8888	0.052*
C13	1.0119 (3)	0.2465 (3)	0.3323 (2)	0.0444 (7)
Н6	1.0219	0.2393	0.2596	0.053*
C14	0.7998 (3)	0.5366 (2)	0.82237 (19)	0.0387 (6)
H7	0.7580	0.5632	0.8731	0.046*
H8	0.8795	0.6053	0.8276	0.046*
C15	0.5996 (2)	0.1581 (2)	1.11580 (18)	0.0277 (5)
C16	0.7976 (3)	0.4437 (2)	0.41560 (19)	0.0360 (6)
Н9	0.7485	0.4872	0.4355	0.043*
C17	0.5615 (2)	0.1877 (2)	1.20699 (19)	0.0332 (5)
C18	0.9751 (2)	0.2590 (2)	0.54358 (18)	0.0296 (5)
C19	0.6969 (3)	0.0339 (3)	1.2106 (2)	0.0376 (6)
H10	0.7440	-0.0192	1.2130	0.045*
C20	0.5945 (3)	0.1345 (3)	1.3033 (2)	0.0404 (6)
H11	0.5706	0.1519	1.3674	0.048*
C21	1.1090 (3)	0.1438 (3)	0.6107 (2)	0.0528 (8)
H12	1.1634	0.1013	0.6006	0.063*
C22	0.8396 (3)	-0.0902(3)	0.8508 (2)	0.0403 (6)
H13	0.9302	-0.0474	0.8542	0.048*
H14	0.8134	-0.1721	0.8086	0.048*
C23	1.0055 (3)	0.2159 (3)	0.72536 (19)	0.0384 (6)
H15	0.9886	0.2208	0.7953	0.046*
C24	0.9179 (2)	0.3201 (2)	0.45969 (18)	0.0293 (5)
C25	0.9382 (2)	0.3168 (2)	0.35420 (19)	0.0341 (5)
C26	0.8837 (3)	0.3834 (3)	0.27801 (19)	0.0396 (6)
H16	0.8943	0.3841	0.2052	0.048*
C27	0.8157 (3)	0.4470 (3)	0.3094 (2)	0.0407 (6)
H17	0.7804	0.4938	0.2589	0.049*
C28	0.6612 (3)	0.0576 (3)	1.3048 (2)	0.0434 (7)
H18	0.6832	0.0204	1.3696	0.052*
C29	0.5015 (3)	0.2878 (3)	0.8138 (2)	0.0430 (6)
H19	0.4788	0.3137	0.7426	0.052*
C30	1.0856 (3)	0.1536 (3)	0.7115 (2)	0.0517 (8)
H20	1.1236	0.1181	0.7718	0.062*
H21	0.6133	0.5993	0.5272	0.062*
H22	0.5357	0.5415	0.4228	0.062*

H23	0.3996	0.2283	0.5323	0.062*
H24	0.3640	0.1262	0.4584	0.062*
H25	0.8137	0.6589	1.0626	0.062*
H26	0.7833	0.5224	1.0522	0.062*
H27	0.9093	0.2935	1.0132	0.062*
H28	0.9674	0.2114	1.0153	0.062*
H29	0.6825	0.1033	0.6230	0.062*
H30	0.5809	0.1432	0.5701	0.062*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.04086 (18)	0.04053 (19)	0.02340 (14)	0.02651 (15)	0.00992 (12)	0.00430 (12)
Cu2	0.03470 (17)	0.03519 (18)	0.02483 (14)	0.02200 (14)	0.01212 (12)	0.00651 (11)
01	0.0572 (12)	0.0509 (12)	0.0259 (8)	0.0380 (10)	0.0119 (8)	0.0046 (7)
O2	0.0648 (13)	0.0685 (14)	0.0297 (9)	0.0510 (12)	0.0057 (8)	-0.0006 (8)
03	0.0582 (12)	0.0535 (12)	0.0259 (8)	0.0391 (10)	0.0142 (8)	0.0092 (8)
04	0.0661 (13)	0.0620 (14)	0.0255 (8)	0.0366 (11)	0.0141 (8)	0.0055 (8)
05	0.0548 (11)	0.0444 (11)	0.0273 (8)	0.0286 (9)	0.0146 (8)	0.0074 (7)
O6	0.0869 (17)	0.0887 (18)	0.0454 (11)	0.0738 (15)	0.0117 (11)	0.0028 (11)
07	0.0535 (11)	0.0428 (11)	0.0302 (8)	0.0336 (9)	0.0194 (8)	0.0108 (7)
08	0.0596 (12)	0.0521 (12)	0.0445 (10)	0.0422 (10)	0.0240 (9)	0.0190 (9)
09	0.0456 (11)	0.0453 (12)	0.0398 (9)	0.0166 (9)	0.0079 (8)	0.0119 (8)
O10	0.0359 (9)	0.0394 (10)	0.0352 (8)	0.0191 (8)	0.0124 (7)	0.0093 (7)
011	0.0723 (14)	0.0597 (14)	0.0483 (11)	0.0393 (12)	0.0308 (10)	0.0139 (10)
012	0.0638 (15)	0.0736 (16)	0.0508 (12)	0.0323 (13)	-0.0077 (10)	0.0003 (11)
013	0.0708 (16)	0.0746 (18)	0.0614 (14)	0.0227 (14)	0.0070 (12)	0.0268 (12)
N1	0.0306 (10)	0.0342 (11)	0.0268 (9)	0.0164 (9)	0.0098 (8)	0.0056 (8)
N2	0.0332 (10)	0.0361 (11)	0.0286 (9)	0.0183 (9)	0.0138 (8)	0.0070 (8)
N3	0.0363 (11)	0.0318 (11)	0.0268 (9)	0.0160 (9)	0.0085 (8)	0.0055 (8)
N4	0.0347 (11)	0.0371 (12)	0.0251 (9)	0.0193 (9)	0.0104 (8)	0.0059 (8)
C1	0.0257 (11)	0.0308 (13)	0.0301 (11)	0.0123 (10)	0.0094 (9)	0.0030 (9)
C2	0.0519 (17)	0.0580 (19)	0.0436 (14)	0.0297 (15)	0.0270 (13)	0.0059 (13)
C3	0.0392 (14)	0.0419 (16)	0.0520 (15)	0.0245 (13)	0.0170 (12)	0.0007 (12)
C4	0.0324 (12)	0.0333 (13)	0.0254 (10)	0.0152 (11)	0.0084 (9)	0.0033 (9)
C5	0.0332 (12)	0.0314 (13)	0.0314 (11)	0.0172 (11)	0.0104 (10)	0.0045 (9)
C6	0.0352 (13)	0.0354 (14)	0.0255 (10)	0.0151 (11)	0.0106 (9)	0.0030 (9)
C7	0.0396 (14)	0.0447 (16)	0.0376 (12)	0.0224 (12)	0.0174 (11)	0.0051 (11)
C8	0.0380 (14)	0.0429 (16)	0.0326 (12)	0.0196 (12)	0.0112 (10)	0.0095 (10)
C9	0.0387 (14)	0.0477 (17)	0.0447 (14)	0.0216 (13)	0.0184 (11)	-0.0056 (12)
C10	0.0323 (13)	0.0347 (14)	0.0424 (13)	0.0175 (11)	0.0125 (10)	0.0041 (10)
C11	0.0455 (15)	0.0423 (15)	0.0332 (12)	0.0267 (13)	0.0145 (11)	0.0088 (11)
C12	0.0421 (15)	0.0402 (16)	0.0566 (16)	0.0257 (13)	0.0145 (13)	0.0131 (12)
C13	0.0512 (17)	0.0552 (18)	0.0359 (13)	0.0210 (14)	0.0248 (12)	0.0052 (12)
C14	0.0581 (17)	0.0343 (14)	0.0293 (11)	0.0244 (13)	0.0114 (11)	0.0045 (10)
C15	0.0268 (11)	0.0265 (12)	0.0307 (11)	0.0099 (10)	0.0097 (9)	0.0015 (9)
C16	0.0438 (15)	0.0357 (14)	0.0313 (11)	0.0193 (12)	0.0085 (10)	0.0069 (10)
C17	0.0308 (12)	0.0386 (14)	0.0313 (11)	0.0117 (11)	0.0127 (10)	-0.0009 (10)

C18	0.0310 (12)	0.0304 (13)	0.0287 (11)	0.0117 (10)	0.0102 (9)	0.0030 (9)
C19	0.0392 (14)	0.0465 (16)	0.0356 (12)	0.0238 (12)	0.0130 (11)	0.0120 (11)
C20	0.0413 (14)	0.0526 (17)	0.0312 (12)	0.0175 (13)	0.0167 (11)	0.0019 (11)
C21	0.0603 (19)	0.074 (2)	0.0484 (15)	0.0495 (18)	0.0222 (14)	0.0155 (15)
C22	0.0518 (16)	0.0550 (17)	0.0331 (12)	0.0365 (14)	0.0200 (11)	0.0131 (11)
C23	0.0467 (15)	0.0491 (16)	0.0290 (11)	0.0278 (13)	0.0123 (11)	0.0101 (11)
C24	0.0323 (12)	0.0289 (12)	0.0260 (10)	0.0098 (10)	0.0089 (9)	0.0022 (9)
C25	0.0360 (13)	0.0369 (14)	0.0271 (11)	0.0084 (11)	0.0114 (10)	0.0019 (10)
C26	0.0432 (15)	0.0462 (16)	0.0261 (11)	0.0096 (13)	0.0119 (10)	0.0084 (10)
C27	0.0456 (15)	0.0421 (16)	0.0314 (12)	0.0149 (13)	0.0060 (11)	0.0141 (11)
C28	0.0482 (16)	0.0593 (19)	0.0282 (12)	0.0228 (14)	0.0139 (11)	0.0153 (11)
C29	0.0451 (15)	0.0505 (17)	0.0422 (14)	0.0262 (14)	0.0132 (12)	0.0196 (12)
C30	0.064 (2)	0.069 (2)	0.0434 (15)	0.0492 (18)	0.0163 (14)	0.0184 (14)

Geometric parameters (Å, °)

Cu1—O2	1.9061 (18)	C3—C10	1.440 (3)
Cu1—O1	1.9270 (16)	С3—Н2	0.9500
Cu1—N4	1.989 (2)	C4—C14	1.513 (3)
Cu1—N3	2.0298 (19)	C5—C22	1.519 (3)
Cu1—O9	2.293 (2)	C6—C22	1.514 (3)
Cu2—O3	1.9114 (16)	C7—C18	1.392 (3)
Cu2—O7	1.9246 (16)	C7—C21	1.415 (4)
Cu2—N1	2.017 (2)	C8—C29	1.401 (4)
Cu2—N2	2.0260 (18)	С8—Н3	0.9500
Cu2—O10	2.2643 (18)	C9—C17	1.436 (4)
O1—C4	1.273 (3)	С9—Н4	0.9500
O5—C4	1.235 (3)	C10-C12	1.408 (4)
O2—C11	1.264 (3)	C11—C14	1.511 (3)
O6—C11	1.219 (3)	C12—C29	1.364 (4)
O7—C5	1.272 (3)	С12—Н5	0.9500
O8—C5	1.238 (3)	C13—C25	1.432 (4)
O3—C6	1.263 (3)	С13—Н6	0.9500
O4—C6	1.237 (3)	С14—Н7	0.9900
O9—H29	0.914	С14—Н8	0.9900
O9—H30	0.962	C15—C17	1.398 (3)
O10—H27	0.868	C16—C27	1.399 (3)
O10—H28	0.907	С16—Н9	0.9500
O11—H25	0.993	C17—C20	1.398 (4)
O11—H26	0.856	C18—C24	1.432 (3)
O12—H23	0.952	C19—C28	1.394 (4)
O12—H24	0.897	C19—H10	0.9500
O13—H21	0.957	C20—C28	1.365 (4)
O13—H22	0.944	C20—H11	0.9500
N1—C8	1.326 (3)	C21—C30	1.367 (4)
N1—C1	1.362 (3)	C21—H12	0.9500
N2—C19	1.333 (3)	С22—Н13	0.9900
N2—C15	1.355 (3)	C22—H14	0.9900
N3—C16	1.331 (3)	C23—C30	1.394 (4)

N3—C24	1.357 (3)	С23—Н15	0.9500
N4—C23	1.330 (3)	C24—C25	1.402 (3)
N4—C18	1.361 (3)	C25—C26	1.406 (4)
C1—C10	1.391 (3)	C26—C27	1.364 (4)
C1—C15	1.431 (3)	C26—H16	0.9500
C2—C13	1.346 (4)	C27—H17	0.9500
C2—C7	1.438 (3)	C28—H18	0.9500
C2—H1	0.9500	С29—Н19	0.9500
С3—С9	1.350 (4)	С30—Н20	0.9500
O2—Cu1—O1	94.22 (7)	С17—С9—Н4	119.4
O2—Cu1—N4	172.50 (8)	C1-C10-C12	117.3 (2)
O1—Cu1—N4	92.40 (7)	C1-C10-C3	118.3 (2)
O2—Cu1—N3	90.83 (8)	C12—C10—C3	124.3 (2)
O1—Cu1—N3	164.15 (9)	O6—C11—O2	121.6 (2)
N4—Cu1—N3	81.87 (8)	O6-C11-C14	118.5 (2)
O2—Cu1—O9	96.55 (8)	O2—C11—C14	119.9 (2)
01—Cu1—O9	99.84 (8)	C29—C12—C10	119.2 (2)
N4—Cu1—O9	85.78 (8)	С29—С12—Н5	120.4
N3—Cu1—O9	94.49 (7)	С10—С12—Н5	120.4
O3—Cu2—O7	94.75 (7)	C2—C13—C25	122.0 (2)
O3—Cu2—N1	89.31 (7)	С2—С13—Н6	119.0
07—Cu2—N1	168.67 (8)	С25—С13—Н6	119.0
O3—Cu2—N2	164.81 (8)	C11—C14—C4	119.5 (2)
07—Cu2—N2	92.39 (7)	С11—С14—Н7	107.4
N1—Cu2—N2	81.31 (8)	С4—С14—Н7	107.4
O3—Cu2—O10	99.15 (7)	С11—С14—Н8	107.4
O7—Cu2—O10	93.79 (7)	С4—С14—Н8	107.4
N1—Cu2—O10	96.00 (7)	H7—C14—H8	107.0
N2—Cu2—O10	93.73 (7)	N2—C15—C17	123.3 (2)
C4—O1—Cu1	126.47 (15)	N2—C15—C1	116.27 (19)
C11—O2—Cu1	127.43 (16)	C17—C15—C1	120.4 (2)
C6—O3—Cu2	129.19 (15)	N3—C16—C27	121.8 (2)
C5—O7—Cu2	127.87 (15)	N3—C16—H9	119.1
Cu1—O9—H29	119.3	С27—С16—Н9	119.1
Cu1—O9—H30	131.1	C15—C17—C20	117.2 (2)
Cu2—O10—H27	117.8	C15—C17—C9	118.3 (2)
Cu2—O10—H28	112.6	C20—C17—C9	124.6 (2)
H29—O9—H30	98.1	N4—C18—C7	123.6 (2)
H27—O10—H28	98.2	N4—C18—C24	116.0 (2)
H25—O11—H26	110.1	C7—C18—C24	120.4 (2)
H23—O12—H24	94.7	N2—C19—C28	122.4 (2)
H21—O13—H22	92.2	N2—C19—H10	118.8
C8—N1—C1	118.1 (2)	С28—С19—Н10	118.8
C8—N1—Cu2	128.98 (16)	C28—C20—C17	119.6 (2)
C1—N1—Cu2	112.87 (15)	C28—C20—H11	120.2
C19—N2—C15	117.8 (2)	C17—C20—H11	120.2
C19—N2—Cu2	129.25 (17)	C30—C21—C7	119.7 (3)
C15—N2—Cu2	112.89 (15)	C30—C21—H12	120.1
C16—N3—C24	118.3 (2)	C7—C21—H12	120.1

C16—N3—Cu1	129.80 (17)	C6—C22—C5	123.0 (2)
C24—N3—Cu1	111.89 (15)	С6—С22—Н13	106.6
C23—N4—C18	118.1 (2)	С5—С22—Н13	106.6
C23—N4—Cu1	128.45 (16)	С6—С22—Н14	106.6
C18—N4—Cu1	113.33 (15)	С5—С22—Н14	106.6
N1-C1-C10	123.3 (2)	H13—C22—H14	106.5
N1—C1—C15	116.3 (2)	N4—C23—C30	122.3 (2)
C10—C1—C15	120.4 (2)	N4—C23—H15	118.8
C13—C2—C7	120.7 (2)	С30—С23—Н15	118.8
C13—C2—H1	119.7	N3—C24—C25	123.5 (2)
С7—С2—Н1	119.7	N3—C24—C18	116.46 (19)
C9—C3—C10	121.3 (2)	C25—C24—C18	120.1 (2)
С9—С3—Н2	119.4	C24—C25—C26	116.8 (2)
С10—С3—Н2	119.4	C24—C25—C13	118.0 (2)
O5—C4—O1	122.5 (2)	C26—C25—C13	125.2 (2)
O5—C4—C14	118.1 (2)	C27—C26—C25	119.5 (2)
O1—C4—C14	119.4 (2)	С27—С26—Н16	120.2
O8—C5—O7	122.1 (2)	С25—С26—Н16	120.2
O8—C5—C22	116.2 (2)	C26—C27—C16	120.2 (2)
O7—C5—C22	121.7 (2)	С26—С27—Н17	119.9
O4—C6—O3	121.8 (2)	С16—С27—Н17	119.9
O4—C6—C22	117.0 (2)	C20—C28—C19	119.6 (2)
O3—C6—C22	121.23 (19)	C20-C28-H18	120.2
C18—C7—C21	116.6 (2)	C19—C28—H18	120.2
C18—C7—C2	118.7 (2)	C12—C29—C8	119.9 (2)
C21—C7—C2	124.7 (2)	С12—С29—Н19	120.1
N1—C8—C29	122.2 (2)	С8—С29—Н19	120.1
N1—C8—H3	118.9	C21—C30—C23	119.6 (3)
С29—С8—Н3	118.9	C21—C30—H20	120.2
C3—C9—C17	121.3 (2)	С23—С30—Н20	120.2
С3—С9—Н4	119.4		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O9—H29…O4	0.91	2.08	2.961 (3)	161
O9—H30…O12	0.96	1.85	2.769 (3)	158
O10—H27…O5	0.87	1.91	2.720 (3)	154
O10—H28···O8 ⁱ	0.91	1.92	2.824 (3)	172
011—H25···08 ⁱⁱ	0.99	1.99	2.983 (3)	174
O11—H26···O5	0.86	1.99	2.831 (3)	167
O12—H23…O13 ⁱⁱⁱ	0.95	1.86	2.800 (3)	168
O12—H24···O4 ^{iv}	0.90	1.89	2.780 (3)	169
O13—H21…O6	0.96	1.96	2.915 (3)	177
O13—H22…O6 ⁱⁱⁱ	0.94	2.06	2.952 (3)	156

Symmetry codes: (i) -*x*+2, -*y*, -*z*+2; (ii) *x*, *y*+1, *z*; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*+1, -*y*, -*z*+1.

Fig. 1